

PHYSICS
 Written examination

Tuesday 24 November 2020
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 11.45 am (2 hours 30 minutes)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
B	18	18	110

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, pre-written notes (one folded A3 sheet or two A4 sheets bound together by tape) and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 38 pages
- Formula sheet
- Answer sheet for multiple-choice questions

Instructions

- Write your student number in the space provided above on this page.
- Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the formula sheet.

SECTION A-Multiple-choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct or that best answers the question.
A correct answer scores 1 ; an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the value of g to be $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

Question 1

The diagram below shows the electric field lines between two charges of equal magnitude.

Question 2
Jupiter's moon Ganymede is its largest satellite.
Ganymede has a mass of $1.5 \times 10^{23} \mathrm{~kg}$ and a radius of $2.6 \times 10^{6} \mathrm{~m}$.
Which one of the following is closest to the magnitude of Ganymede's surface gravity?
A. $0.8 \mathrm{~m} \mathrm{~s}^{-2}$
B. $1.5 \mathrm{~m} \mathrm{~s}^{-2}$,
C. $3.8 \mathrm{~m} \mathrm{~s}^{-2}$
$g=\frac{G M}{r^{2}} \in$ Formulabheet
D. $9.8 \mathrm{~m} \mathrm{~s}^{-2}$

$$
=\frac{6.67 \times 10^{-3} \times 1.5 \times 10^{23}}{\left(2.6 \times 10^{6}\right)^{2}}
$$

Use the following information to answer Questions 3 and 4.
A positron with a velocity of $1.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ is injected into a uniform magnetic field of $4.0 \times 10^{-2} \mathrm{~T}$, directed into the page, as shown in the diagram below. It moves in a vacuum in a semicircle of radius r. The mass of the positron is $9.1 \times 10^{-31} \mathrm{~kg}$ and the charge on the positron is $1.6 \times 10^{-19} \mathrm{C}$. Ignore relativistic effects.

Question 3

Which one of the following best gives the speed of the positron as it exits the magnetic field?
A. $0 \mathrm{~m} \mathrm{~s}^{-1}$
B. much less than $1.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
C. $1.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
D. greater than $1.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$

Question 4
The speed of the positron is changed to $7.0 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$.
Which one of the following best gives the value of the radius r for this speed?
A. $\frac{r}{4}$
B.
B. $\frac{r}{2}$
C. r

$$
\begin{aligned}
& \text { Speed } \\
& 1.4 \times 10^{6} \rightarrow 7.0 \times 10^{5} \\
& \div 2
\end{aligned} \quad \begin{aligned}
& \div \\
& \text { Equating } F_{m}=B g V \\
& F_{l}=\frac{m v^{2}}{r} \\
& F_{m}=F_{l} \\
& B q V=\frac{m v^{2}}{r} \rightarrow r=\frac{m V^{2}}{B q v}=\frac{m V}{B q}
\end{aligned}
$$

D. $2 r$

$$
\begin{aligned}
& \Rightarrow r \propto V \\
& V \div 2 \rightarrow r \div 2 .
\end{aligned}
$$

Question 5
Not Needed. $=10 \div 10^{4} \mathrm{~m}^{2}=10 \times 10^{-4} \mathrm{~m}$
A coil consisting of 20 loops with an area of $10 \mathrm{~cm}^{2}$ is placed in a uniform magnetic field B of strength 0.03 T so that the plane of the coil is perpendicular to the field direction, as shown in the diagram below.

$$
\begin{aligned}
\Phi & =B A \\
& =0.03 \times\left(10 \times 10^{-4}\right) \\
& =3 \times 10^{-5}
\end{aligned}
$$

The magnetic flux through the coil is closest to
A. 0 Wb
B. $3.0 \times 10^{-5} \mathrm{~Wb}$
C. $6.0 \times 10^{-4} \mathrm{~Wb}$
D. $3.0 \times 10^{-1} \mathrm{~Wb}$

Question 6

A single loop of wire moves into a uniform magnetic field B of strength $3.5 \times 10^{-4} \mathrm{~T}$ over time $t=0.20 \mathrm{~s}$ from point X to point Y , as shown in the diagram below. The area A of the loop is $0.05 \mathrm{~m}^{2}$.

The magnitude of the average induced EMF in the loop is closest to

$$
\varepsilon=-1 \times \frac{+\left(3.5 \times 10^{-4} \times 0.05\right)}{0.20}
$$

A. 0 V

$$
=-8.8 \times 10^{-5}
$$

B. $3.5 \times 10^{-6} \mathrm{~V}$
C. $8.8 \times 10^{-5} \mathrm{~V}$
D. $8.8 \times 10^{3} \mathrm{~V}$

Question 7

An ideal transformer has an input DC voltage of $240 \mathrm{~V}, 2000$ turns in the primary coil and 80 turns in the secondary coil.
The output voltage is closest to
A. 0 V
B. 9.6 V
C. $6.0 \times 10^{3} \mathrm{~V}$
D. $3.8 \times 10^{7} \mathrm{~V}$

Question 8

A ball is attached to the end of a string and rotated in a circle at a constant speed in a vertical plane, as shown in the diagram below.

The arrows in options A. to D. below indicate the direction and the size of the forces acting on the ball. Ignoring air resistance, which one of the following best represents the forces acting on the ball when it is at the bottom of the circular path and moving to the left?
A.

Two blocks of mass 5 kg and 10 kg are placed in contact on a frictionless horizontal surface，as shown in the diagram below．A constant horizontal force，F ，is applied to the 5 kg block．

10方 needs Thrice the froe as the stay th are the Same acceliantion

Question 9

Which one of the following statements is correct？
A．The net force on each block is the same．
B．The acceleration experienced by the 5 kg block is twice the acceleration experienced by the 10 kg block．
The magnitude of the net force on the 5 kg block is half the magnitude of the net force on the 10 kg block．
D．The magnitude of the net force on the 5 kg block is twice the magnitude of the net force on the 10 kg block．

Question 10

If the force F has a magnitude of 250 N ，what is the work done by the force in moving the blocks in a straight line for a distance of 20 m ？
A． 5 kJ
B．$\quad 25 \mathrm{~kJ}$

$$
\begin{aligned}
W & =F d \\
& =250 \times 20
\end{aligned}
$$

D． 500 kJ

Question 11

The International Space Station (ISS) is travelling around Earth in a stable circular orbit, as shown in the diagram below.

Question 13

Matter is converted to energy by nuclear fusion in stars.
If the star Alpha Centauri converts mass to energy at the rate of $6.6 \times 10^{9} \mathrm{~kg} \mathrm{~s}^{-1}$, then the power generated is closest to
A. $2.0 \times 10^{18} \mathrm{~W}$
B. $2.0 \times 10^{18} \mathrm{~J}$
C. $6.0 \times 10^{26} \mathrm{~W}$
D. $6.0 \times 10^{26} \mathrm{~J}$

$$
\begin{aligned}
E & =m c^{2} \\
& =6.6 \times 10^{9} \times\left(3.0 \times 10^{8}\right)^{2} \\
& =6.0 \times 10^{26} \mathrm{~J} \text { each Seconal. } \\
\text { as Power } & =\frac{E}{t} \\
\text { Power } & =6.0 \times 10^{26} \mathrm{~W} .
\end{aligned}
$$

Question 14

Students are investigating the diffraction of waves using a ripple tank. Water waves are directed towards barriers with gaps of different sizes, as shown below.
In which one of the following would the greatest diffraction effects be observed?
A.

B.
D.

$\frac{1}{3}<\frac{2}{3}$
C.

Question 15

I The energy of a light wave increases with increasing amplitude.
II The energy of a light wave increases with increasing frequency.
III The energy of a light wave increases with decreasing wavelength.
Which of the statements above about the energy of light waves is correct?
A. III only
B. I and II only
C. I and III only
(10.)
all of the statements are correct

$$
\begin{aligned}
& \text { Particle (Proton) Model } \\
& E_{\text {photo }}=h f \text {. or } h \frac{c}{h} \\
& E_{\rho} \uparrow \rightarrow f \uparrow \\
& E_{p} \uparrow \rightarrow \lambda \downarrow \\
& \text { All sitetmerts Correct. }
\end{aligned}
$$

Which one of the following correctly ranks these metals in terms of their work function, from highest to lowest in numerical value?
A. sodium, potassium, lithium, nickel
B. nickel, potassium, sodium, lithium
C. potassium, nickel, lithium, sodium
D. lithium, sodium, potassium, nickel

Question 17

The diagram below shows some of the energy levels for the electrons within an atom. The arrows labelled A, B, C and D indicate transitions between the energy levels and their lengths indicate the relative size of the energy change.

Which transition results in the emission of a photon with the most energy?
A. A
B. B
C. C
D. D

Question 18
Quantised energy levels within atoms can best be explained by
A. electrons behaving as individual particles with different energies.
B. electrons behaving as waves, with each energy level representing a diffraction pattern.
C. protons behaving as waves, with only standing waves at particular wavelengths allowed.
D. electrons behaving as waves, with only standing waves at particular wavelengths allowed.

Question 19
Which one of the following best describes a hypothesis?
A. a testable scientific explanation
res? the thing to be testee.
B. a well-tested scientific explanation
C. a scientific explanation by a famous scientist
D. a widely believed and highly plausible explanation

Question 20
When photons with energy E strike a metal surface, electrons may be emitted.
The maximum kinetic energy, $E_{\mathrm{k} \text { max }}$, of the emitted electrons is given by $E_{\mathrm{k} \text { max }}=E-W$, where W is the work function of the metal.
Which one of the following graphs best shows the relationship between the maximum kinetic energy of these electrons, $E_{\mathrm{k} \text { max }}$, and the wavelength of the photons, λ ?

$$
\begin{aligned}
& E_{k m a x}=E-W \\
& E_{k m a i}=h f-W \\
& E_{k}=\frac{h C}{\lambda}-W \\
& E_{k} M_{m u} \times \frac{1}{\lambda} \rightarrow \text { Hyperbolic in Shape. }
\end{aligned}
$$

SECTION B
Instructions for Section B
Answer all questions in the spaces provided.
Where an answer box is provided, write your final answer in the box.
If an answer box has a unit printed in it, give your answer in that unit.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the value of g to be $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

Question 1 (2 marks)
Two bar magnets are placed close to each other, as shown in Figure 1.
Sketch the shape and the direction of at least four magnetic field lines between the two poles within the dashed border shown in Figure 1.

Figure 1

$$
\text { Maguitifieddlines go North } \rightarrow \text { South }
$$

Note: Question asks for within the dashed border.
Lines must be in there to get full marks.
Also arks for Between the two Poles. Lines must go North to South within the box.

Question 2 (3 marks)
Gravitation, magnetism and electricity can be explained using a field model. According to our understanding of physics and current experimental evidence, these three field types can be associated with only monopoles, only dipoles or both monopoles and dipoles.

In the table below, indicate whether each field type can be associated with only monopoles, only dipoles or both monopoles and dipoles by ticking (\checkmark) the appropriate box.

Field type	Only monopoles	Only dipoles	Both monopoles and dipoles
gravitation			
magnetism			
electricity			

Gravitition-Alluruted to ONE thing
Magnatianom - A North and a

Question 3 (6 marks)
Electron microscopes use a high-precision electron velocity selector consisting of an electric field, E, perpendicular to a magnetic field, B.
Electrons travelling at the required velocity, v_{0}, exit the aperture at point Y , while electrons travelling slower or faster than the required velocity, v_{0}, hit the aperture plate, as shown in Figure 2.

Figure 2
a. Show that the velocity of an electron that travels straight through the aperture to point Y is given by
$v_{0}=\frac{E}{B}$.
$F_{E}=F_{m}$

$g F=$ g $V B$
b. Calculate the magnitude of the velocity, v_{0}, of an electron that travels straight through the aperture to point Y if $E=500 \mathrm{kV} \mathrm{m}^{-1}$ and $B=0.25 \mathrm{~T}$. Show your working.

$$
\begin{aligned}
v_{0} & =\frac{500 \times 10^{3}}{0.25} \\
& =2.0 \times 10^{0}
\end{aligned}
$$

$2.0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
c. i. At which of the points $-\mathrm{X}, \mathrm{Y}$ or $\mathrm{Z}-$ in Figure 2 could electrons travelling faster than v_{0} arrive?
\qquad

$$
\begin{aligned}
& F_{m}=q V B \\
& F_{m} \uparrow \text { when } v_{0} \uparrow
\end{aligned}
$$

$$
F_{E}=q E
$$

F_{E} stays Some.
ii. Explain your answer to part ci.

Force daw to elathicbild remains the Same.
Force due to magnetic bield depencts on the

The Forces are no longer in Balance.

Net force Prom the page.

Question 4 (10 marks)
The Ionospheric Connection Explorer (ICON) space weather satellite, constructed to study Earth's ionosphere, was launched in October 2019. ICON will study the link between space weather and Earth's weather at its orbital altitude of 600 km above Earth's surface. Assume that ICON's orbit is a circular orbit. Use $R_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}$.
a. Calculate the orbital radius of the ICON satellite.

$$
6.97 \times 10^{6} \mathrm{~m}
$$

b. Calculate the orbital period of the ICON satellite correct to three significant figures. Show your working.
c. Explain how the ICON satellite maintains a stable circular orbit without the use of propulsion engines. 2 marks
 This force is constant in Magnitude and 90° to the direction of travel.
Thus the satellite miuirtiuns a arralar orbit.

$$
\begin{aligned}
& R_{0}=R_{E}+\text { Alcitucle }=6.37 \times 10^{6}+600 \times 10^{3} \\
& =6.97 \times 10^{6}
\end{aligned}
$$

d. Figure 3 shows the strength of Earth's gravitational field, g, as a function of orbital altitude, h, above the surface of Earth.

$$
\begin{aligned}
& \text { Careful! } \\
& \text { Broken wais-area of lower pant }{ }_{\text {Figure }}^{h(\mathrm{~km})}=8.2 \times\left(600 \times 10^{3}\right) \text {. }
\end{aligned}
$$

Figure 3
Determine the change in gravitational potential energy of the ICON satellite as it travels from Earth's surface to its orbital altitude of 600 km above Earth's surface. The mass of the ICON satellite is $2 \widehat{88 \mathrm{~kg}}$.

$$
\begin{aligned}
& A_{\text {ned }}=8.2 \times\left(600 \times 10^{3}\right)+\frac{1}{2} \times\left(600 \times 10^{3}\right) \times(1.6) \\
&=5,400,000 \\
& \Delta V_{g}=\text { mass } \times \text { Anco } \\
&=288 \times 5400000 \\
&=1,555,200,000=1.56 \times 10^{9} \\
& 1.56 \times 10^{9} \mathrm{~J}
\end{aligned}
$$

Note: Area under Gravitational Field brungth V_{S} Height graph is Energy per kilograin ($I \mathrm{~kg}^{-1}$).
Thus $\Delta V_{g}=$ mass $\times A_{\text {red }}$.

* Cont use $\Delta V_{g}=m g \Delta h$, since g is not constant.

Question 5 (9 marks)
A rectangular wire loop with dimensions $0.050 \mathrm{~m} \times 0.035 \mathrm{~m}$ is placed between two magnets that create a uniform magnetic field of strength 0.2 mT . The loop is rotated with a frequency of 50 Hz in the direction shown in Figure 4. The ends of the loop are connected to a split-ring commutator to create a DC generator. The loop is initially in the position shown in Figure 4.

one. Easy to get confused.
Figure 4
a. In which direction - clockwise or anticlockwise - will the induced current travel through the loop for the first quarter turn as seen from above?

Flux changes from O to Masc-tblat mark
Antidorkwise Induced opposes that change -to ring ht. $R_{\text {in id Hand GRip gives Antictoctewisl }}$
b. Calculate the average EMF measured in the loop for the first quarter turn.

$$
\begin{aligned}
\varepsilon==N \frac{\Delta D}{\Delta t} & =-N \frac{4 \text { reareB}}{\delta t} \\
& =-1 \times \frac{0.050 \times 0.035 \times 0.2 \times 10^{-3}}{0.005} \\
& =-7 \times 10^{-5}
\end{aligned}
$$

Note: B in milliTerla.

$$
\begin{aligned}
& f=50 \rightarrow T=\frac{1}{f} \\
& T=\frac{1}{50} \\
& T=0.02 \\
& \text { for a fall Turn } \\
& \text { We have } \frac{1}{4} \text { turn } t=0.02 \div 4=0.005
\end{aligned}
$$

The negative is not needed.
c. On the axes provided below, sketch the output EMF versus time, t, for the first two rotations. Include a scale on the horizontal axis.

d. Suggest two modifications that could be made to the apparatus shown in Figure 4 that would increase the output EMF of the DC generator.

- Increase the Areas of the coil - Increase the frequency of potation.

Note: For PART C.
Split Ring Comnitatur thus \rightsquigarrow not \sim
Two Rotations $=1 \times 0.02=0.04 \mathrm{sec}$.
Careful when drawing to make it look uniform

$$
\begin{gathered}
\text { PART } D \\
V \operatorname{sing} \rightarrow \sum_{i}=-N \frac{\text { Area } \times \text { Field Stregth }}{\text { time }} \\
\text { To increase. }
\end{gathered}
$$

Question 6 (6 marks)
Two Physics students hold a coil of wire in a constant uniform magnetic field, as shown in Figure fa. The ends of the wire are connected to a sensitive ammeter. The students then change the shape of the coil by pulling each side of the coil in the horizontal direction, as shown in Figure 5b. They notice a current register on the ammeter.

Figure 5a

Figure 5b
a. Will the magnetic flux through the coil increase, decrease or stay the same as the students change the shape of the coil?

Current on Ammeter.

\Rightarrow Induced Cement \Rightarrow Flux chasige \rightarrow Decrease.
.b. Explain, using physics principles, why the ammeter registered a current in the coil and determine the direction of the induced current.
 Lens's law states an Induced comment will produce a flux to oppose the change. ie. int page Reit e Howl Grip rule gives the divicition of the induced cement as clockevise.
c. The students then push each side of the coil together, as shown in Figure 6a, so that the coil returns to its original circular shape, as shown in Figure bb, and then changes to the shape shown in Figure bc.

ammeter
Figure aa

ammeter
Figure bb

ammeter
Figure 6c

Describe the direction of any induced currents in the coil during these changes. Give your reasoning.
2 marks
ba $\rightarrow 6 b$: Flux increasing ito page.
\Rightarrow Induced out of page
\Rightarrow RH Grip induced current Anticlockwise
$b l \rightarrow 6 c:$ Flux decreasing into Page
\Rightarrow Induced Pase into Page.
\Rightarrow RH Grip induced current Clockwise

Note: Current Induced onaly when Flux changes

$$
\text { re. } 6 a \rightarrow b b \text {, then } 6 b \rightarrow b c \text {. }
$$

Question 7 (5 marks)
A rechargeable electric toothbrush uses a transformer circuit, as shown in Figure 7. A secondary coil inside the toothbrush is connected, via an iron core, to a primary coil that is connected to the mains power supply. The mains power is $240 \mathrm{~V}_{\text {RMS }}$ and the toothbrush recharges at $12 \mathrm{~V}_{\text {RMS }}$. The average power delivered by the transformer to the toothbrush is 0.90 W . Assume that the transformer is ideal.

Figure 7
a. Calculate the peak voltage in the secondary coil. Show your working.
b. Determine the ratio of the number of turns $\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}} \cdot \frac{\mathrm{Vp}_{\rho}}{V_{S}}=\frac{N_{\rho}}{N_{S}}$

1 mark

OR 20:1
c. Calculate the RMS current in the primary coil while the toothbrush is charging. Show your working. 2 marks

Idea Transformer \Rightarrow Power Primary $=$ Power Secondary

$$
\begin{aligned}
P & =V I \\
0.90 & =240 \times I \\
I & =3.75 \times 10^{-3} \mathrm{~A} . \\
& =3.25 \mathrm{~mA} \\
& =3.8 \mathrm{~mA}
\end{aligned}
$$

Note:"Powert Delivered by Trambormer" $=0.90 \mathrm{~W}$
re. Power Secondary $=0.90 \mathrm{~W}$

* Voltage in Primary $\equiv 240 \mathrm{~V}$.

Question 9 (5 marks)
An ideal spring is compressed by 0.15 m . A ball of mass 0.20 kg is placed in contact with the compressed spring. The spring is then released, causing the ball to move horizontally, with a velocity of v, across a smooth surface, as shown in Figure 9.

$$
\text { Spring Potation } E \rightarrow \text { kinetic } E .
$$

ground
Mu thane
Figure 9
this $12 \mathrm{~m} \mathrm{~s}^{-1}$, correct to two significant figures. Show your working.

$$
\begin{array}{l|l}
\rightarrow V_{s}=E_{k} & v=11.8585 \\
\frac{1}{2} k x^{2}=\frac{1}{2} m v^{2} & =12 \mathrm{~ms}^{-1} \\
\frac{1}{2} \times 1250 \times 0.15^{2}=\frac{1}{2} \times 0.20 \times v^{2} & \\
v^{2}=140.625 &
\end{array}
$$

b. Calculate the speed of the ball after it has fallen a vertical distance of 2.5 m . Show your working.

14 mst

Question 10 (12 marks)
Jacinda designs a computer simulation program as part of her practical investigation into the physics of vehicle collisions. She simulates colliding a car of mass 1200 kg , moving at $10 \mathrm{~m} \mathrm{~s}^{-1}$, into a stationary van of mass 2200 kg . After the collision, the van moves to the right at $6.5 \mathrm{~m} \mathrm{~s}^{-1}$. This situation is shown in Figure 10.

Figure 10
a. Calculate the speed of the car after the collision and indicate the direction it would be travelling in. Show your working.
\qquad

$$
\text { PBetore }=P_{\text {after }}
$$

$$
(1200 \times 10)+(2200 \times 0)=(1200 \times \mathrm{V})+(2200 \times 6.5)
$$

$$
12000=1200 v+14300
$$

$-2300=1200 \mathrm{~V}$
$-1.916667=\mathrm{v}$
\qquad
\qquad
1.9 mst

Left.
Note: If you choose to me compos bearing S. ie East -west

$$
\text { You MUST draw wet } t \rightarrow \text { Dost to moke it clear }
$$

b. Explain, using appropriate physics, why this collision represents an example of either an elastic or an inelastic collision.

Ki After

$$
\begin{aligned}
E_{k} & =\left(\frac{1}{2} \times 1200 \times 1.9^{2}\right)+\left(\frac{1}{2} \times 2200 \times 6.5^{2}\right) \\
& =48641 \\
& =4.8 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

K.EAP宛 <K.E. Before

The collision is INELASTIC.
c. The collision between the car and the van takes $40 \mathrm{~ms} .40 \times 10^{-3}$
i. Calculate the magnitude and indicate the direction of the average force on the van by the car. 3 marks

ii. Calculate the magnitude and indicate the direction of the average force on the car by the van.

Using Newton's THIRD Law

- Sane bize
- Opposite direction Note Could do a Similar coluulatión to Ci .
358 kN to the Left
Note: Explain -Can use calculations.
SECTION B - continued In this case you need them.

Question 11 (4 marks)

An astronaut has left Earth and is travelling on a spaceship at $0.800 c(\gamma=1.67)$ directly towards the star known as Sirius, which is located 8.61 light-years away from Earth, as measured by observers on Earth.
a. How long will the trip take according to a clock that the astronaut is carrying on his spaceship? Show

Question 12 (5 marks)
In a Young's double-slit interference experiment, laser light is incident on two slits, \underline{S}_{1} and S_{2}, that are $4.0 \times 10^{-4} \mathrm{~m}$ apart, as shown in Figure 11a.
Rays from the slits meet on a screen 2.00 m from the slits to produce an interference pattern. Point C is at the centre of the pattern. Figure 11 b shows the pattern obtained on the screen.

2 marks
 pome of reference.
a. There is a bright fringe at point P on the screen.

Explain how this bright fringe is formed.
P is the fourth Bright fringe.

Need lott forfullmants,
b. The distance from the central bright fringe at point C to the bright fringe at point P is $1.26 \times 10^{-2} \mathrm{~m}$.

Calculate the wavelength of the laser light. Show your working.

$$
\begin{aligned}
\Delta x & =\frac{h L}{d} & 3.15 \times 10^{-3}= & \frac{3 \times 2.00}{4.0 \times 10^{-4}} \\
\Delta x & =\frac{1.26 \times 10^{-2}}{4} & S & =6.3 \times 10^{-7} \mathrm{~m} \\
& =3.15 \times 10^{-3} & & =630 \mathrm{~nm}
\end{aligned}
$$

630 nm
Note: P is the $4^{\text {th }}$ fringe.
Δx is distance between each fringe.

$$
\therefore 4 \times \Delta x=1.26 \times 10^{-2}
$$

Question 13 (4 marks)

A 0.8 m long guitar string is set vibrating at a frequency of 250 Hz . The standing wave envelope created in the guitar string is shown in Figure 12.

Figure 12
a. Calculate the speed of the wave in the guitar string.

Note: Fig 12 shows $\frac{8}{2}$.
one SOUD
$f \times 3$.
one DASHED.
\Rightarrow New with show $3 \times \frac{h}{2}$

$$
\text { or 1气 }\}
$$

Question 14 (3 marks)
Figure 13 shows a representation of an electromagnetic wave.
Correctly label Figure 13 using the following symbols.

Figure 13

Question 15 (4 marks)

The metal surface in a photoelectric cell is exposed to light of a single frequency and intensity in the apparatus shown in Figure 14.
The voltage of the battery can be varied in value and reversed in direction.

Figure 14
a. A graph of photocurrent versus voltage for one particular experiment is shown in Figure 15.

On Figure 15, draw the trace that would result for another experiment using light of the same
b. What is a name given to the point labelled A on Figure 15 ?

c. Why does the photocurrent fall to zero at the point labelled A on Figure 15?

1 mark Stopping voltaire is enough to prevent the
most enenvelic electrons reaching the other side

Question 16 (5 marks)
A beam of electrons travelling at $1.72 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$ illuminates a crystal, producing a diffraction pattern as shown in Figure 16. Take the mass of an electron to be $9.1 \times 10^{-31} \mathrm{~kg}$. Ignore relativistic effects.

Figure 16
a. Calculate the kinetic energy of one of the electrons. Show your working.
$E_{k}=\frac{1}{2} m v^{2}$
$=\frac{1}{2} \times 9.1 \times 10^{-31} \times\left(1-72 \times 10^{5}\right)^{2}$
$=1.346 \times 10^{-20} \mathrm{~J}$
$=\left(1.346 \times 10^{-20}\right) \div\left(1.6 \times 10^{-19}\right)=0.0841 \mathrm{eV}$

b. The electron beam is now replaced by an X-ray beam. The resulting diffraction pattern has the same spacing as that produced by the electron beam.

Question 17 (5 marks)
Figure 17 shows the emission spectrum for helium gas.

Figure 17
a. Which spectral line indicates the photon with the lowest energy?

1 mark
668 mm

K bequest fonepresing \rightarrow long urovelength

$$
5.1 \times 10^{14} \mathrm{~Hz}
$$

c. Explain why only certain wavelengths and, therefore, certain energies are present in the helium spectrum. * Electrons exist in certain enerqu loves * Electrons transitioning between these levels Con only init discrete amounts of energy * Onlig contain wavelengths are present.

Question 18 (16 marks)
Students are modelling the effect of the resistance of electrical cables, r, on the transmission of electrical power. They model the cables using the circuit shown in Figure 18.

Figure 18
a. The $24 \mathrm{~V}_{\mathrm{DC}}$ power supply models the mains power.

Describe the effect of increasing the resistance of the electrical cables, r, on the brightness of the constant resistance globe, R.

$$
\begin{array}{r}
\text { Note: } 2 \text { marks Need - What happens to the globe } \\
\text { - and a reason. } \\
\text { either o reduced current } \\
\text { - mineosisid voltage drop in cables. } \\
\text { - increased power loss in cables. }
\end{array}
$$

The students investigate the effect of changing r by measuring the current in the electrical cables for a range of values. Their results are shown in Table 1 below.

Table 1

Resistance of cables, $r(\Omega)$	Current in cables, $i(\mathrm{~A})$	$\frac{1}{i}\left(\mathrm{~A}^{-1}\right)$
2.4	2.4	$\frac{1}{2.4}=0.4166=0.42$
3.6	2.0	0.50
6.4	1.7	0.59
7.6	1.5	0.67
10.4	1.3	0.77

b. Identify the dependent and the independent variables in this experiment. Give your reasoning.

c. To analyse the data, the students use the following equation to calculate the resistance of the cables for the circuit.

$$
r=\frac{24}{i}-R \quad \text { use } V=i R_{T} \quad \text { where } R_{T}=r+R .
$$

Show that this equation is true for the circuit shown in Figure 18. Show your working.

d. Calculate the values of $\frac{1}{i}$ and write them in the spaces provided in the last column of Table 1.

Note: Got the 10 given date values hae 2 signitiont figures, Gie $\frac{1}{i}$ to 2 signubient fäurcs.
e. Plot a graph of r on the y-axis against $\frac{1}{i}$ on the x-axis on the grid provided below. On your graph:

- choose an appropriate scale and numbers for the x-axis
- draw a straight line of best fit through the plotted points
- include uncertainty bars ($\pm x$-direction only) of $\pm 0.02 \mathrm{~A}^{-1}$ (Uncertainty bars in the y-direction are not required.)

$$
\begin{aligned}
\text { ongraph } 0.1 & \approx 13 \mathrm{~mm} \\
\Rightarrow 0.02 & \approx 2.5 \mathrm{~mm}
\end{aligned}
$$

f. Use the straight line of best fit to find the value of the constant resistance globe, R. Give your reasoning.
\qquad

