|   |   | V | 1 | C | Т | 0 | R | 1/ | AN |   | C | U | R | RI | C | U | L | U | М  |   |   |
|---|---|---|---|---|---|---|---|----|----|---|---|---|---|----|---|---|---|---|----|---|---|
| A | N | D |   | A | S | S | E | S  | S  | M | E | N | T | A  | U | T | H | 0 | RI | T | Y |

Victorian Certificate of Education 2020

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

Letter

ANS

STUDENT NUMBER

# **PHYSICS** Written examination

# **Tuesday 24 November 2020**

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 11.45 am (2 hours 30 minutes)

# **QUESTION AND ANSWER BOOK**

# Structure of book

| Section | Number of questions | Number of questions<br>to be answered | Number of<br>marks |
|---------|---------------------|---------------------------------------|--------------------|
| А       | 20                  | 20                                    | 20                 |
| В       | 18                  | 18                                    | 110                |
|         |                     |                                       | Total 130          |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, pre-written notes (one folded A3 sheet or two A4 sheets bound together by tape) and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

#### Materials supplied

- Question and answer book of 38 pages
- Formula sheet
- Answer sheet for multiple-choice questions

#### Instructions

- Write your student number in the space provided above on this page.
- Check that your **name** and **student number** as printed on your answer sheet for multiple-choice questions are correct, **and** sign your name in the space provided to verify this.
- · Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

#### At the end of the examination

- · Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the formula sheet.

# Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2020

# **SECTION A – Multiple-choice questions**

# Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is correct or that best answers the question.

A correct answer scores 1; an incorrect answer scores 0.

Marks will not be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the value of g to be 9.8 m s<sup>-2</sup>.

# **Question 1**

The diagram below shows the electric field lines between two charges of equal magnitude.



Field lines coming out of change => + ve.

The best description of the two charges is that the

A. charges are both positive.

B. charges are both negative.

- **C.** charges can be either both positive or both negative.
- D. left-hand charge is positive and the right-hand charge is negative.

# Question 2

Jupiter's moon Ganymede is its largest satellite.

Ganymede has a mass of  $1.5 \times 10^{23}$  kg and a radius of  $2.6 \times 10^6$  m.

Which one of the following is closest to the magnitude of Ganymede's surface gravity?



 $g = \frac{G M}{r^2} \in Formula Sheet$ =  $\frac{6.67 \times 10^{-3} \times 1.5 \times 10^{-23}}{(2.6 \times 10^6)^2}$ 

# Use the following information to answer Questions 3 and 4.

A positron with a velocity of  $1.4 \times 10^6$  m s<sup>-1</sup> is injected into a uniform magnetic field of  $4.0 \times 10^{-2}$  T, directed into the page, as shown in the diagram below. It moves in a vacuum in a semicircle of radius r. The mass of the positron is  $9.1 \times 10^{-31}$  kg and the charge on the positron is  $1.6 \times 10^{-19}$  C. Ignore relativistic effects.



#### **Question 3**

Which one of the following best gives the speed of the positron as it exits the magnetic field? Force acts 90° to direction of travel => no change in 'speed' component.

A.  $0 \text{ m s}^{-1}$ 

much less than  $1.4 \times 10^6$  m s<sup>-1</sup> B.

C.  $1.4 \times 10^{6} \text{ m s}^{-1}$ 

D. greater than  $1.4 \times 10^6 \text{ m s}^{-1}$ 

# **Question 4**

The speed of the positron is changed to  $7.0 \times 10^5$  m s<sup>-1</sup>.

Which one of the following best gives the value of the radius r for this speed?



Speed 1.4 × 106 -> 7.0 × 105 -1·4 A.

Equality  $F_{M} = B_{q} v$  $F_{e} = \frac{m v^{2}}{r}$ 

Jrd U

 $F_m = F_c$   $B_q v = \frac{mv^2}{r} \rightarrow r = \frac{mv^2}{B_q v} =$ 

SECTION A - continued **TURN OVER** V-2 -7 1-2

#### 2020 PHYSICS EXAM

## **Ouestion 5**

- = 10 = 104 m2 = 10×104 m

A coil consisting of 20 loops with an area of  $10 \text{ cm}^2$  is placed in a uniform magnetic field B of strength 0.03 T so that the plane of the coil is perpendicular to the field direction, as shown in the diagram below.



Not Needed.

Q = BA  $= 0.03 \times (10 \times 10^{-4})$ =  $3 \times 10^{-5}$ 

 $\begin{aligned} & \mathcal{E} = -N \frac{\Delta \overline{\mathbf{F}}}{\Delta t} \\ & \mathcal{E} = -I \times \frac{+(3.5 \times 10^{\circ} \times 0.05)}{0.20} \\ & \mathbf{F} = -\frac{1}{5} \end{aligned}$ 

The magnetic flux through the coil is closest to

A. 0 Wb  $3.0 \times 10^{-5}$  Wb **B**.  $6.0 \times 10^{-4} \text{ Wb}$ C.  $3.0 \times 10^{-1} \text{ Wb}$ D.

#### **Question 6**

A single loop of wire moves into a uniform magnetic field <u>B of strength 3.5 × 10<sup>-4</sup> T over time t = 0.20 s from</u> point X to point Y, as shown in the diagram below. The area A of the loop is 0.05 m<sup>2</sup>. toop moves in

| x     | × | ×, | X | × | × | ×  |
|-------|---|----|---|---|---|----|
|       | X | ×  | × | × | × | ×  |
| 1 - E | × | ×  | X | × | X | ß× |
|       | × | ×  | × | х | × | ×  |
|       | × | ×  | х | х | × | ×  |
|       |   |    |   |   |   |    |

The magnitude of the average induced EMF in the loop is closest to

A. 0 V  $3.5 \times 10^{-6}$  V B.  $8.8 \times 10^{-5}$  V C.  $8.8 \times 10^3 V$ D.

# **Question** 7

An ideal transformer has an input DC voltage of 240 V, 2000 turns in the primary coil and 80 turns in the secondary coil.

The output voltage is closest to

A. 0 V

B. 9.6 V

**C.**  $6.0 \times 10^3 \text{ V}$ 

**D.**  $3.8 \times 10^7$  V

 $\begin{array}{l} DC \quad voltage \rightarrow \Psi_B = 0 \\ \implies Induced Voltage = 0 \end{array}$ 

Note: Transformers only work for AC

**SECTION A** – continued

# **Question 8**

A ball is attached to the end of a string and rotated in a circle at a constant speed in a vertical plane, as shown in the diagram below.



Only Porcessare Weight of hall and Tension in string. As the ball moves 'vp' after this instant Tension > Weight.

The arrows in options A. to D. below indicate the direction and the size of the forces acting on the ball. Ignoring air resistance, which one of the following best represents the forces acting on the ball when it is at the bottom of the circular path and moving to the left?





SECTION A – continued TURN OVER

6

# Use the following information to answer Questions 9 and 10.

Two blocks of mass 5 kg and 10 kg are placed in contact on a frictionless horizontal surface, as shown in the diagram below. A constant horizontal force, F, is applied to the 5 kg block.

| Move together with Same acceleration                                   |       |
|------------------------------------------------------------------------|-------|
| 10 by needs Twise F 5kg                                                | 10 kg |
| the force as the<br>Shy to have the MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM |       |
| Same acceleration                                                      |       |

#### **Question 9**

Which one of the following statements is correct?

A. The net force on each block is the same.

**B**. The acceleration experienced by the 5 kg block is twice the acceleration experienced by the 10 kg block.

 $C_{\rm r}$  The magnitude of the net force on the 5 kg block is half the magnitude of the net force on the 10 kg block.

**D.** The magnitude of the net force on the 5 kg block is twice the magnitude of the net force on the 10 kg block.

# **Question 10**

If the force F has a magnitude of 250 N, what is the work done by the force in moving the blocks in a straight line for a distance of 20 m?

a distance of 20 m? A. 5 kJB. 25 kJC. 50 kJD. 500 kJ W = F d = 250 x 20= 5000

SECTION A - continued

# **Ouestion 11**

The International Space Station (ISS) is travelling around Earth in a stable circular orbit, as shown in the diagram below.



"Speed constant Direction changes k.E. is a Scalar -> Constant. Mormanteum és a vector The direction of travel keeps changing -> Momentum changes

Which one of the following statements concerning the momentum and the kinetic energy of the ISS is correct?

- Both the momentum and the kinetic energy vary along the orbital path. A.
- Both the momentum and the kinetic energy are constant along the orbital path. **B**.
- The momentum is constant, but the kinetic energy changes throughout the orbital path. C.
- The momentum changes, but the kinetic energy remains constant throughout the orbital path. D.

# **Ouestion 12**

A high-energy proton is travelling through space at a constant velocity of  $2.50 \times 10^8$  m s<sup>-1</sup>. The Lorentz factor,  $\gamma$ , for this proton would be closest to

- A. 1.81
- B. 2.44
- C. 3.27
- 3.39 D.

to

# **Question 13**

Matter is converted to energy by nuclear fusion in stars.

| If the star Alpha Centauri converts mass to energy at the rate of 6.6 > | $5 \times 10^9$ kg s <sup>-1</sup> , then the power generated is closest | ł |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|---|
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|---|

 $2.0 \times 10^{18} \,\mathrm{W}$ A.

- **B.**  $2.0 \times 10^{18}$  J
- C.  $6.0 \times 10^{26} \, \mathrm{W}$
- $6.0 \times 10^{26} \text{ J}$ D.

=  $6 \cdot 6 \times 10^{4} \times (3 \cdot 0 \times 10^{5})^{2}$ =  $6 \cdot 0 \times 10^{26} \text{ J each Second.}$ as Power =  $\frac{E}{t}$ . Prover = 6.0 × 1026 W.

E= me

SECTION A - continued **TURN OVER** 

# **Ouestion 14**

Students are investigating the diffraction of waves using a ripple tank. Water waves are directed towards barriers with gaps of different sizes, as shown below.



Ept = ft Ept = SV

0

4

SECTION A - continued

All statements Correct

# **Question 16**

The diagram below shows a plot of maximum kinetic energy,  $E_{k max}$ , versus frequency, f, for various metals capable of emitting photoelectrons.



Which one of the following correctly ranks these metals in terms of their work function, from highest to lowest in numerical value? highest Work function how highest Threshold frequency D = h for first

- A. sodium, potassium, lithium, nickel
- B. nickel, potassium, sodium, lithium
- C potassium, nickel, lithium, sodium
- D. lithium, sodium, potassium, nickel

# **Question 17**

The diagram below shows some of the energy levels for the electrons within an atom. The arrows labelled A, B, C and D indicate transitions between the energy levels and their lengths indicate the relative size of the energy change.



Which transition results in the emission of a photon with the most energy? A. A B. B C. C Must be dropping Poron.

=> Lithum

SECTION A - continued **TURN OVER** 

10

#### **Ouestion 18**

Quantised energy levels within atoms can best be explained by

- electrons behaving as individual particles with different energies. A.
- electrons behaving as waves, with each energy level representing a diffraction pattern. B.
- protons behaving as waves, with only standing waves at particular wavelengths allowed. C.
- electrons behaving as waves, with only standing waves at particular wavelengths allowed. D.

#### **Ouestion 19**

Which one of the following best describes a hypothesis? Which one of the following best describes a hypothesis? The thing to be tested.

- A.) a testable scientific explanation a well-tested scientific explanation B.
- a scientific explanation by a famous scientist C.
- a widely believed and highly plausible explanation D.

#### **Question 20**

When photons with energy E strike a metal surface, electrons may be emitted.

The maximum kinetic energy,  $E_{k \max}$ , of the emitted electrons is given by  $E_{k \max} = E - W$ , where W is the work function of the metal.

Which one of the following graphs best shows the relationship between the maximum kinetic energy of these electrons,  $E_{\rm k max}$ , and the wavelength of the photons,  $\lambda$ ?



END OF SECTION A

# **CONTINUES OVER PAGE**

**TURN OVER** 

# **SECTION B**

# **Instructions for Section B**

Answer all questions in the spaces provided.

Where an answer box is provided, write your final answer in the box.

If an answer box has a unit printed in it, give your answer in that unit.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the value of g to be 9.8 m s<sup>-2</sup>.

# Question 1 (2 marks)

Two bar magnets are placed close to each other, as shown in Figure 1.

Sketch the shape and the direction of **at least four** magnetic field lines between the two poles within the dashed border shown in Figure 1.



Figure 1

Magnetic Gield lines go North -> South

Note: Question asks for within the dashed border. Lines must be in there to get full marks Also asks for Between the two Poles. Lines must go North to South within the box.

SECTION B - continued

5

# Question 2 (3 marks)

Gravitation, magnetism and electricity can be explained using a field model. According to our understanding of physics and current experimental evidence, these three field types can be associated with only monopoles, only dipoles or both monopoles and dipoles.

In the table below, indicate whether each field type can be associated with only monopoles, only dipoles or both monopoles and dipoles by ticking ( $\checkmark$ ) the appropriate box.

| Field type  | Only monopoles | Only dipoles | Both monopoles and dipoles |
|-------------|----------------|--------------|----------------------------|
| gravitation |                |              |                            |
| magnetism   |                | $\checkmark$ |                            |
| electricity |                |              | $\checkmark$               |

Cravitation - Allrauted to ONE thing O Magnetisism - A North and a South IN Electricity - A point charge . A Parallel Plates 11

SECTION B – continued TURN OVER

#### **Question 3** (6 marks)

Electron microscopes use a high-precision electron velocity selector consisting of an electric field, E, perpendicular to a magnetic field, B.

Electrons travelling at the required velocity,  $v_0$ , exit the aperture at point Y, while electrons travelling slower or faster than the required velocity,  $v_0$ , hit the aperture plate, as shown in Figure 2.





a. Show that the velocity of an electron that travels straight through the aperture to point Y is given by E



**b.** Calculate the magnitude of the velocity,  $v_0$ , of an electron that travels straight through the aperture to point Y if  $E = 500 \text{ kV m}^{-1}$  and B = 0.25 T. Show your working.

2 marks



SECTION B - Question 3 - continued

| 15                                                                                                                                                | 2020 PHYSICS EXAM |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| i. At which of the points – X, Y or Z – in Figure 2 could electrons travelling faster than $v_0$<br>$F_m = 9 \ U \ B.$ $F_m \ T \ when \ v_0 \ T$ | $F_E = q_i E$     |
| ii. Explain your answer to part c.i.<br>Force due to electric bield remains the Same.                                                             | 2 marks           |
| Force due to magnetic bield depends on the<br>velocity. UN then Fm N.<br>The Forces are no longer in Balance.                                     | 'e                |
| Fm > FE                                                                                                                                           |                   |
| Net force Poron the page.                                                                                                                         |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |
|                                                                                                                                                   |                   |

SECTION B – continued TURN OVER

c.

Question 4 (10 marks)

Use  $R_{\rm E} = 6.37 \times 10^6$  m.

The Ionospheric Connection Explorer (ICON) space weather satellite, constructed to study Earth's ionosphere, was launched in October 2019. ICON will study the link between space weather and Earth's weather at its orbital altitude of 600 km above Earth's surface. Assume that ICON's orbit is a circular orbit.

| a.   | Calculate the orbital radius of the ICON satellite.                                                                                       | 1 mark  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      | Calculate the orbital radius of the ICON satellite.<br>$R_0 = R_E + A Utilized = 6.37 \times 10^6 + 600 \times 10^3$ $= 6.97 \times 10^6$ |         |
|      | 1 - 97 × 186                                                                                                                              |         |
|      | 107.6                                                                                                                                     |         |
|      | 6.97×10 <sup>6</sup> m                                                                                                                    |         |
|      | Calculate the orbital period of the ICON satellite correct to three significant figures. Show your                                        |         |
| b.   | working.                                                                                                                                  | 4 marks |
| Cing | when Motion T=                                                                                                                            |         |
| Cut  | 41121-<br>41121-                                                                                                                          | -       |
| C    | $\alpha = \frac{1}{12}$ $(10^{4})^{-1}$ $(10^{4})^{-1}$                                                                                   | -       |
| Aec  | elevation due to gravity q= F2 = V 6.67×10"x 5.98×10                                                                                      | 64      |
|      | =7 GM 477 = 57890195                                                                                                                      |         |
|      | $r^2 - T^2$                                                                                                                               |         |
|      | $T^2 + \frac{4\pi^2r^3}{6m} = 5.79 \times 10^3$                                                                                           |         |
|      | 1 = GM - 50/9 X10                                                                                                                         |         |
|      | 117223                                                                                                                                    |         |
|      | Notes T= Handy for you                                                                                                                    | ir      |
|      | Note: $T = \int \frac{4\pi^2 r^3}{G M}$ Handy for you<br>5.79 × 10 <sup>3</sup> s Sheet of Notes                                          |         |
|      | 5.79 × 10 sheet of Notes                                                                                                                  |         |
| c.   | Explain how the ICON satellite maintains a stable circular orbit without the use of propulsion engines.                                   | 2 marks |
|      | The only force acting on ICON is gravity, all<br>towards Earth.                                                                           | ing     |
|      | t l r tl                                                                                                                                  |         |
|      | lowards Earth.                                                                                                                            | 1.      |
|      | This force is constant in Magnitude and 90° to the di                                                                                     | rection |
|      | of travel.                                                                                                                                |         |
|      | A diver.                                                                                                                                  |         |
|      | Thus the satellite maintains a arcular orbit.                                                                                             |         |
|      |                                                                                                                                           |         |

SECTION B - Question 4 - continued

Δ

**d.** Figure 3 shows the strength of Earth's gravitational field, *g*, as a function of orbital altitude, *h*, above the surface of Earth.

17



SECTION B – continued TURN OVER

#### Question 5 (9 marks)

A rectangular wire loop with dimensions  $0.050 \text{ m} \times 0.035 \text{ m}$  is placed between two magnets that create a uniform magnetic field of strength 0.2 mT. The loop is rotated with a frequency of 50 Hz in the direction shown in Figure 4. The ends of the loop are connected to a split-ring commutator to create a DC generator. The loop is initially in the position shown in Figure 4.

00 N S Careful with this one. Fasy to get confused. Figure 4 In which direction - clockwise or anticlockwise - will the induced current travel through the loop for Я. Fluse changes from O to Masc-toleft mark the first quarter turn as seen from above? Induced opposes that change to right. Right Hand Grap gives Anticlockwire Anticlockwise Calculate the average EMF measured in the loop for the first quarter turn. 3 marks b. E == N of = - N Area × B X 0.050X 0-035 × 0.2X10 0.005 -5 f=50 -> T= f T=50 7×10-5 v Note: B in milli Testa. T=0.02 The negative is not for a full Turn. We have 4 turn t = 0.02 = 4 = 0:005 needed. SECTION B - Question 5 - continued

2 marks

c. On the axes provided below, sketch the output EMF versus time, *t*, for the first two rotations. Include a scale on the horizontal axis. 3 marks

19



**d.** Suggest **two** modifications that could be made to the apparatus shown in Figure 4 that would increase the output EMF of the DC generator.

Any TWO From " Increase field strength " Increase the number of Coils · Increase the Area of the coil · Increase the frequency of rotation.

Note: For PART C Split Ring Commutation thus mot Two Rolations = ZX 0.02 = 0.04 sec. Carebul when drawing to make it look uniform Increase V Avea X Field Stregth time PART Vieng-> &= -Vi To Increase.

SECTION B – continued TURN OVER

# Question 6 (6 marks)

Two Physics students hold a coil of wire in a constant uniform magnetic field, as shown in Figure 5a. The ends of the wire are connected to a sensitive ammeter. The students then change the shape of the coil by pulling each side of the coil in the horizontal direction, as shown in Figure 5b. They notice a current register on the ammeter.



=7 Induced Current

Flux change -> Pecrecise.

a. Will the magnetic flux through the coil increase, decrease or stay the same as the students change the shape of the coil?

lecrease

**b.** Explain, using physics principles, why the ammeter registered a current in the coil and determine the direction of the induced current.

rage decreases into states an Incluced current law oppose the change. flix to moduce a page 10 the di gives Grip rule clockwin as our

1 mark

3 marks

4

ш К

# SECTION B - Question 6 - continued

c. The students then push each side of the coil together, as shown in Figure 6a, so that the coil returns to its original circular shape, as shown in Figure 6b, and then changes to the shape shown in Figure 6c.



Describe the direction of any induced currents in the coil during these changes. Give your reasoning. 2 marks

: Flux increasing into page. 66 2 Induced out of page. => RH Brip incluced current Anticlockwise

66760: Flux decreasing into Page =7 Induced Pluse into Page => RH Grips induced current Clockwise

Note: Current Induced only when Fluss changes. 12. 6a -> 6b, then 6b -> 6c.

SECTION B – continued TURN OVER

#### Question 7 (5 marks)

A rechargeable electric toothbrush uses a transformer circuit, as shown in Figure 7. A secondary coil inside the toothbrush is connected, via an iron core, to a primary coil that is connected to the mains power supply. The mains power is 240  $V_{RMS}$  and the toothbrush recharges at 12  $V_{RMS}$ . The average power delivered by the transformer to the toothbrush is 0.90 W. Assume that the transformer is ideal.





a. Calculate the <u>peak voltage</u> in the <u>secondary coil</u>. Show your working. 2 marks  $V_{RMS} = \frac{12}{12} + \frac{12}{12} + \frac{12}{12} + \frac{16}{12} + \frac{17}{12} + \frac{17}$ 

SECTION B - Question 7 - continued

OT WRITE IN THIS AREA

Z

00

23 2020 PHYSICS EXAM Calculate the RMS current in the primary coil while the toothbrush is charging. Show your working. c. 2 marks I dea Transformer => Power Primary = Power Secondary = VT0.90 = 240 x I I= 3.75×10-3 A. = 3.75 mA 3=8 mA = 3.8 mA Note: \* Power Delivered by Transformer" = 0.90 W 12. Power Secondary = 0.90 W

\* Voltage in Primary = 240 V.

SECTION B – continued TURN OVER

#### Question 8 (6 marks)

Figure 8 shows a small ball of mass 1.8 kg travelling in a horizontal circular path at a constant speed while suspended from the ceiling by a 0.75 m long string.



DO NOT WRITE IN THIS ARE

# Question 9 (5 marks)

An ideal spring is compressed by 0.15 m. A ball of mass 0.20 kg is placed in contact with the compressed spring. The spring is then released, causing the ball to move horizontally, with a velocity of v, across a smooth surface, as shown in Figure 9.

|     | ł               | spring <u></u>      | 3.0 m                      | Sprin             | ng Potential E -> Kine                       | ti E.         |
|-----|-----------------|---------------------|----------------------------|-------------------|----------------------------------------------|---------------|
|     |                 |                     | grou                       | nd                |                                              |               |
| Mui | I have<br>this  |                     | Fig                        | ure 9             |                                              |               |
| a.  | If the spring c | onstant is 1250 N   | $m^{-1}$ , show that the m | nagnitude of the  | e initial velocity, v, of the ball is        |               |
|     |                 |                     | cant figures. Show you     | ur working.       | 1                                            | 2 marks       |
|     | -7 V5 =         |                     |                            |                   | V=108585                                     | _             |
|     |                 | = 2mv               |                            |                   | $V = 11 \circ 3585$<br>= 12 m5 <sup>-1</sup> |               |
|     |                 |                     | 2×0-20×0                   | 2                 |                                              | <del></del>   |
|     | (               | 12=140.1            | 25                         |                   |                                              | _             |
| b.  | Calculate the   | speed of the ball a | after it has fallen a ve   | rtical distance o | of 2.5 m. Show your working.                 | 3 marks       |
|     | Horis onta      | 10                  | Vertically                 |                   | 12                                           | _             |
|     | u=v=            | 12.                 | u=0 a=9.9                  | x=2.5             | 7                                            |               |
|     |                 |                     | $V^2 = u^2 + 2\alpha$      | 9ï                | Speed                                        | _             |
|     |                 |                     | V= 02+2x9                  | -8x2-5            |                                              | $\sim$        |
|     |                 |                     | V2= 49                     |                   | Speed = 122 + 7                              | 2             |
|     |                 |                     | V=7.                       |                   | = 13-8924                                    | 14            |
|     | 14              | • m s <sup>-1</sup> |                            |                   | = 14                                         |               |
|     |                 |                     |                            |                   | SECTION                                      | B – continued |

**TURN OVER** 

#### Question 10 (12 marks)

Jacinda designs a computer simulation program as part of her practical investigation into the physics of vehicle collisions. She simulates colliding a car of mass 1200 kg, moving at 10 m s<sup>-1</sup>, into a stationary van of mass 2200 kg. After the collision, the van moves to the right at 6.5 m s<sup>-1</sup>. This situation is shown in Figure 10.



Explain, using appropriate physics, why this collision represents an example of either an elastic or an b. inelastic collision. 3 marks K.F. Before K.F. Alter EK= 2 MV-2 EK= (1×1200×1.92)+(1×2200×6.52) = 2×1200×10 = 48641= 4.8×104 J = 60 000 = 6×104 T K.E. After < K.E. Belowe The collision is INELASTIC. 40 × 10 - 3 The collision between the car and the van takes 40 ms. c. i. Calculate the magnitude and indicate the direction of the average force on the van by the car. 3 marks Fave = (2200x6-5)-(2200x0) I = Fave x at 40 ×10-3 = 357,500 △p. of Van => Foure = AP = 358 k N T+ve => Right Pretty - Pretone to the Right. 358 kN ii. Calculate the magnitude and indicate the direction of the average force on the car by the van. 2 marks Using Newton's THIRD Law - Same Sige - Opposite direction Note: Could do a Similar coludation to Ci 358 KN to the Left Note: Explain - Can use calculations. In this case you need them. SECTION B - continued **TURN OVER** 

27

4 ш

r 4

S

I

Ζ

ш 

R

 $\geq$ 

0 Z

#### **Ouestion 11** (4 marks)

An astronaut has left Earth and is travelling on a spaceship at 0.800c ( $\gamma = 1.67$ ) directly towards the star known as Sirius, which is located 8.61 light-years away from Earth, as measured by observers on Earth.

How long will the trip take according to a clock that the astronaut is carrying on his spaceship? Show a.

2 marks

your working. Astronaught.  $t = t_0 8$   $10 \circ 76 = t_0 \times 1.67$   $t_0 = 6.4446$ . Earth = 10.76 years.

Is the trip time measured by the astronaut in part a. a proper time? Explain your reasoning. b.

2 marks

4 [11]

r 4

S

Z

ш

oper time. Lock is STATIONARY in the Astronoughts moner

# Question 12 (5 marks)

6044 years

In a Young's double-slit interference experiment, laser light is incident on two slits, S1 and S2, that are  $4.0 \times 10^{-4}$  m apart, as shown in Figure 11a.

Rays from the slits meet on a screen 2.00 m from the slits to produce an interference pattern. Point C is at the centre of the pattern. Figure 11b shows the pattern obtained on the screen.



SECTION B - Question 12 - continued

There is a bright fringe at point P on the screen. a. Explain how this bright fringe is formed. 2 marks P is the Pourth Bright Gringe. -> Path difference of four Wavelengths Need both for fullmarks The distance from the central bright fringe at point C to the bright fringe at point P is  $1.26 \times 10^{-2}$  m. b. Calculate the wavelength of the laser light. Show your working. 3 marks 3.15×10-3 = ××2.00 4.0×10-4 Dri = SL  $\Delta \mathfrak{I} = 1.26 \times 10^{2}$ S= 6.3 ×10-7 m = 3.15 x10-3 = 630 nM 630 nm Note: Pis the 4<sup>th</sup> fringe. Dais distance between each fringe. " 4× A x=1-26×10-2 SECTION B - continued **TURN OVER** 

A 0.8 m long guitar string is set vibrating at a frequency of 250 Hz. The standing wave envelope created in the guitar string is shown in Figure 12.



**a.** Calculate the speed of the wave in the guitar string.



400 m s<sup>-1</sup>

b. The frequency of the vibration in the guitar string is tripled to 750 Hz.On the guitar string below, draw the shape of the standing wave envelope now created.

2 marks

2 marks

K Need

Note: Fig 12 shows 2. f X 3. =7 New will show 3 X by or 125

one SOLID one DASHED.

# Question 14 (3 marks)

Figure 13 shows a representation of an electromagnetic wave.

Correctly label Figure 13 using the following symbols.

E – electric field B - magnetic fieldc – speed of light  $\lambda$  – wavelength Waveleng th Electric Field Speed of light Magnetic Field.

Figure 13

#### Question 15 (4 marks)

The metal surface in a photoelectric cell is exposed to light of a single frequency and intensity in the apparatus shown in Figure 14.

The voltage of the battery can be varied in value and reversed in direction.



SECTION B - continued

# Question 16 (5 marks)

A beam of electrons travelling at  $1.72 \times 10^5$  m s<sup>-1</sup> illuminates a crystal, producing a diffraction pattern as shown in Figure 16. Take the mass of an electron to be  $9.1 \times 10^{-31}$  kg. Ignore relativistic effects.



Figure 16

Calculate the kinetic energy of one of the electrons. Show your working. a.

2 marks

EK= 2 MU = 5 x 9.1x10 -31 x (1-72x10 -346×10-20 (-19) = 0.0841·346 X10-20) = (1-6 X10 Check unite eV 0.08

The electron beam is now replaced by an X-ray beam. The resulting diffraction pattern has the same b. spacing as that produced by the electron beam.

Calculate the energy of one X-ray photon. Show your working.

rking.  $E_{x+ray} = \frac{1}{x}$   $\frac{4 \cdot 14 \times 10^{-15}}{4 \cdot 24 \times 10^{-9}}$ 3 marks 2×105× 4-23598×10 Note: Joule version of h Note: Requined units eV Use eV version of h in in here. 293 eV this part of the calcula

SECTION B - continued **TURN OVER** 



SECTION B - Question 17 - continued

4

ш

R 4

THIS

Z

ш

RIT

3

-0 Z

Explain why only certain wavelengths and, therefore, certain energies are present in the helium c. spectrum. 2 marks \* Electrons exist in certain every levels \* Electrons transitioning between these levels con only emit discrete amounts of evergy \* Only centain wavelengths are present.

SECTION B – continued TURN OVER Question 18 (16 marks)

Students are modelling the effect of the resistance of electrical cables, r, on the transmission of electrical power. They model the cables using the circuit shown in Figure 18.





**a.** The 24  $V_{DC}$  power supply models the mains power.

Describe the effect of increasing the resistance of the electrical cables, r, on the brightness of the constant resistance globe, R. The brightness of the globe would reduce. Since increasing resistance, will reduce the current in the circuit

2 marks

Note: 2 marks Need - What happens to the globe - and a reason. either • reduced current · increased voltage drop in cables. • increased power loss in cables.

SECTION B - Question 18 - continued

The students investigate the effect of changing r by measuring the current in the electrical cables for a range of values. Their results are shown in Table 1 below.

| 10 | 1.00     | ъ. | 1  | 1.1 |
|----|----------|----|----|-----|
|    | <b>n</b> | h  | le |     |
|    | 21       | D  | ne |     |
| _  |          | ~  |    | -   |

| Resistance of cables, r (Ω) | Current in cables, <i>i</i> (A) | $\frac{1}{i}(A^{-1})$ |
|-----------------------------|---------------------------------|-----------------------|
| 2.4                         | 2.4                             | Z.4 = 0.4166 = 0.042  |
| 3.6                         | 2.0                             | 0.50                  |
| 6.4                         | 1.7                             | 0.59                  |
| 7.6                         | 1.5                             | 0 = 67                |
| 10.4                        | 1.3                             | 0.77                  |

**b.** Identify the dependent and the independent variables in this experiment. Give your reasoning.

| Independent | - Resistance of Ca | bles This is | what the star | lents change |
|-------------|--------------------|--------------|---------------|--------------|
| Dependent - | Current in cables, | This is what | the students  | measure      |
|             |                    |              |               |              |

c. To analyse the data, the students use the following equation to calculate the resistance of the cables for the circuit.

use V=i RT where RT = T+R.  $r = \frac{24}{i} - R$ 

Show that this equation is true for the circuit shown in Figure 18. Show your working.

2 marks

2 marks

 $r = \frac{24}{i} - R$ 24 = 1 (r+R) 24 = r+R

**d.** Calculate the values of  $\frac{1}{i}$  and write them in the spaces provided in the last column of Table 1.

2 marks

Note: 9 of the 10 given data values have 2 significant figures. Give i to 2 significant figures.

SECTION B – Question 18 – continued TURN OVER

2020 PHYSICS EXAM SICS EXAM 19 divisions 2 divisions = 0.1 Plot a graph of r on the y-axis against  $\frac{1}{i}$  on the x-axis on the grid provided below. On your graph: e. • choose an appropriate scale and numbers for the x-axis  $\sqrt{}$ ongraph. 0.1 = 13 mm = 0.02 2 2.5 mm draw a straight line of best fit through the plotted points include uncertainty bars (± x-direction only) of ±0.02  $A^{-1}$ 6 marks (Uncertainty bars in the y-direction are not required.) 10 1-2-5 -0-1  $\blacktriangleright \frac{1}{i} (A^{-1})$  $r(\Omega) = 0$ 0 ch 0.8 814 Bal NEAA -10 Use the straight line of best fit to find the value of the constant resistance globe, R. Give your f. 2 marks reasoning. The resistance of the globe is the interapt on the yearis R = 8 SI $R = gradient \times \frac{1}{2} - R$ Note: Official answer was 7 s. 8 Ω However there is some allowance is given for the plotting and fitting of the line of best fit.

END OF QUESTION AND ANSWER BOOK

ш r 4 S Т Z ш R ≥ F 0 Z 0

0