

Victorian Certificate of Education 2021

ANS.

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

Letter

STUDENT NUMBER

Written examination 1

Wednesday 3 November 2021

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 11 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2021

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (3 marks)

1 mark

- Differentiate $y = 2e^{-3x}$ with respect to x. $\frac{dy}{dx} = -6e^{-3x}$
- Evaluate f'(4), where $f(x) = x\sqrt{2x+1}$.

2 marks

 $f(x) = \frac{3C}{\sqrt{2x+1}} + \sqrt{2x+1}$ 4i' = 1 $b' = \frac{1}{2}(2x+1)^{-\frac{1}{2}}x^{2}$. $C'(4) = \frac{4}{\sqrt{2x+1}} + \sqrt{2x+1}$

Question 2 (2 marks)

Let $f'(x) = x^3 + x$.

Find f(x) given that f(1) = 2.

flow) = \((x3+2) doc

P(x) = 264 + 27 + C

f(1) = 2.

Question 3 (5 marks)

Consider the function $g: R \to R$, $g(x) = 2\sin(2x)$.

State the range of g.

1 mark

Range 9 [-2,2]

State the period of g.

1 mark

Period = 2TT = TT

Solve $2\sin(2x) = \sqrt{3}$ for $x \in R$.

3 marks

Sin (2x) = 13

 $20c = 2n\pi + \frac{\pi}{3} \qquad (2n+1)\pi - \overline{L}_3$

 $x = \frac{2n\pi}{2} + \frac{\pi}{6} \qquad (2n+1)\pi - \frac{\pi}{6}$

= nn+ = , (n+ =) + - = .

 $=(n+\frac{1}{6})T$, $nT+\frac{1}{2}T-\frac{\pi}{6}$

nr + 3T

(n+3) T., NEZ

TURN OVER

Question 4 (4 marks)

a. Sketch the graph of $y = 1 - \frac{2}{x - 2}$ on the axes below. Label asymptotes with their equations and axis intercepts with their coordinates.

3 marks

$$\begin{array}{c}
\chi - 2 \\
\chi - 2 \\
\chi - 2 \\
\chi - 2 \\
\chi = 4
\end{array}$$

 $x \in [1, 2)$

b. Find the values of x for which $1 - \frac{2}{x-2} \ge 3$. $1 - \frac{2}{x-2} = 3$

1 mark

$$\frac{1-\frac{2}{x-2}=3}{-\frac{2}{x-2}=2}$$

$$-2=2(x-2)$$

$$-1=x-2$$

$$(=x)$$

Question 5 (4 marks)

Let $f: R \to R$, $f(x) = x^2 - 4$ and $g: R \to R$, $g(x) = 4(x-1)^2 - 4$.

a. The graphs of f and g have a common horizontal axis intercept at (2, 0).

Find the coordinates of the other horizontal axis intercept of the graph of g.

2 marks

$$0 = 4(x - 1)^{2} - 4 \qquad x = 1 \pm 1$$

$$4 = 4(x - 1)^{2} \qquad x = 1 + 1 \qquad x = 1 - 1$$

$$1 = (x - 1)^{2} \qquad = 2 \qquad = 0.$$

$$\pm 1 = x - 1 \qquad \text{other intercent } (0, 0).$$

- **b.** Let the graph of *h* be a transformation of the graph of *f* where the transformations have been applied in the following order:
 - dilation by a factor of $\frac{1}{2}$ from the vertical axis (parallel to the horizontal axis)
 - translation by two units to the right (in the direction of the positive horizontal axis)

State the rule of h and the coordinates of the horizontal axis intercepts of the graph of h.

2 marks

$$f(x) = x^{2} - 4.$$
Potation $f(2x) = (2x)^{2} - 4.$
Translation $f(2(x-2)) = (2(x-2))^{2} - 4$

$$= 4(5(-2)^{2} - 4$$

Horizontal axis Intercepts
$$0 = 4 (x-2)^{2}-4$$

$$4 = 4 (x-2)^{2}$$

$$1 = (x-2)^{2}$$

$$1 = x-2$$

$$x = 2 + 1$$

$$x = 3 = 1$$

$$1 \text{ where y ts } (3,0) (1,0).$$

TURN OVER

Question 6 (6 marks)

An online shopping site sells boxes of doughnuts.

A box contains 20 doughnuts. There are only four types of doughnuts in the box. They are:

- glazed, with custard
- glazed, with no custard
- not glazed, with custard
- not glazed, with no custard.

It is known that, in the box:

- $\frac{1}{2}$ of the doughnuts are with custard
- $\frac{7}{10}$ of the doughnuts are not glazed
- $\frac{1}{10}$ of the doughnuts are glazed, with custard.

Find the probability that it is not glazed, with custard.

Pr(G'1C) = 3=

1 mark

The 20 doughnuts in the box are randomly allocated to two new boxes, Box A and Box B. Each new box contains 10 doughnuts.

One of the two new boxes is chosen at random and then a doughnut from that box is chosen at random.

Let g be the number of glazed doughnuts in Box A.

Find the probability, in terms of g, that the doughnut comes from Box B given that it is glazed.

2 marks

No. Clased in the 20 = 30 x 20 = 6. Closedin Bon A = 9 -7 in Box B = 6-9 Pr (Clayed) = No. Glored = 6

Question 6 - continued

c. The online shopping site has over one million visitors per day.

It is known that half of these visitors are less than 25 years old. $\rightarrow f = \frac{1}{2}$.

Let \hat{P} be the random variable representing the proportion of visitors who are less than 25 years old in

a random sample of five visitors. $\rightarrow n = 5$ Find $Pr(\hat{P} \ge 0.8)$. Do not use a normal approximation. \rightarrow Binomial

3 marks

= P= (x >, 4).

= 504 (1) 4 (1) + 505 (1) 5 (1)

$$=\frac{3}{16}$$

Question 7 (3 marks)

A random variable X has the probability density function f given by

$$f(x) = \begin{cases} \frac{k}{x^2} & 1 \le x \le 2\\ 0 & \text{elsewhere} \end{cases}$$

where k is a positive real number.

a.	Show that $k=2$. $\int_{-2\pi}^{2\pi} \frac{k}{2\pi} dx = 1$	1 mark
	$k \int_{-\infty}^{2} x^{-2} dx = 1$	k=2.
	$R \left[\frac{-1}{-1 \times 2} - \frac{1}{-1 \times 1} - \frac{1}{-1 \times 1} - \frac{1}{-1} \right] = 1$	
	b[-= +1]=1	

b.	Find $E(X)$.	2 marks
	$E(x) = \int_{-\infty}^{\infty} x \times \frac{2}{x^2} dx$	-
	$= \int_{-\infty}^{2} \frac{2}{x} dx.$	-
	72	
	$= \left[2 \log_e(\alpha) \right]_{i}$	
	= 2 loge(2) - 2 loge(1).	
	= 2 loge (2).	-

Question 8 (5 marks)

The gradient of a function is given by $\frac{dy}{dx} = \sqrt{x+6} - \frac{x}{2} - \frac{3}{2}$.

The graph of the function has a single stationary point at $\left(3, \frac{29}{4}\right)$.

Find the rule of the function.

Find the rule of the function.	39 E4 Q 9 3 marks
$U = \left(\sqrt{2116} - \frac{2}{2} - \frac{3}{2} \right) ds$	$\frac{29}{4} = \frac{54}{3} - \frac{9}{4} - \frac{9}{2} + C.$ 3 marks
4 = 5 ((51+6) = - = - =) doc	29 - 54 + 9 + 9 = C.
$y = 2(5c+6)^{3n} - 3c^{2} - 3 = 3c + 0$	87-216+27+54 = C.
3 4 2 2010.	$\frac{168-216}{12} = C.$
Vising (3, 79).	$-\frac{48}{12} = C$
$\frac{24}{4} = \frac{2(3+6)^{\frac{1}{2}}}{4} - \frac{3}{2} \times 3 + C.$	C = -4
$\frac{29}{4} = \frac{2(9)^{2}}{3} - \frac{9}{4} - \frac{9}{2} + C$	$u = 2(x+6)^{\frac{3}{2}} - x^2 - \frac{3}{2}x - 4$
7	J-3 4 2 T.

Determine the nature of the stationary point.

2 marks

When
$$x = 2$$
.

When $x = 2$.

 $\frac{dy}{dx} = \sqrt{z+6} - \frac{z^2}{z^2} = \frac{dy}{dx} = 0$
 $\frac{dy}{dx} = \sqrt{4+6} - \frac{4}{2} - \frac{3}{2}$
 $= \sqrt{8} - \frac{5}{2}$
 $= 2\sqrt{2} - \frac{5}{2}$
 $= 7$

Negotive

 $\Rightarrow \text{ Positive gradient}$

LOCAL MAXIMUM. To between Jg and J16. Close to $\sqrt{9} \rightarrow 3 \cdot ?$ $\sqrt{2} \approx 1.414 - 72\sqrt{2} \approx 2.828$ $\sqrt{3}^2 = \frac{49}{2} = 124$ $\sqrt{3}^2 = \frac{49}{$

TURN OVER

Question 9 (8 marks)

Consider the unit circle $x^2 + y^2 = 1$ and the tangent to the circle at the point P, shown in the diagram below.

a. Show that the equation of the line that passes through the points A and P is given by
$$y = -\frac{x}{\sqrt{3}} + \frac{2}{\sqrt{3}}$$
.

$$M = Tom \times .$$

$$= Tan (57)$$

$$= -\frac{1}{5}x + C.$$

$$= -\frac{1}{5}x + C.$$

$$0 = -\frac{1}{5}x^{2} + C.$$

$$C = \frac{1}{5}$$

$$C = \frac{1}{5}$$

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & q \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$, where $q \in \mathbb{R} \setminus \{0\}$, and let the graph of the function h be the transformation of the line that passes through the points A and P under T.

i. Find the values of q for which the graph of h intersects with the unit circle at least once.

1 mark

1 mark

(2,0) 9 - dilation from 20-asis, Could be reflected also ge[-1,0)V(0,1]

Let the graph of h intersect the unit circle twice.

Find the values of q for which the coordinates of the points of intersection have only positive

Between y-coordinate $\in (1, \sqrt[3]{3})$ these lines $y=2\times \sqrt[3]{3}$ $y=2\times \sqrt[3]{3}$ $y=2\times \sqrt[3]{3}$ $Q = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}$ Question 9 – continued For $0 < q \le 1$, let P' be the point of intersection of the graph of h with the unit circle, where P' is always the point of intersection that is closest to A, as shown in the diagram below.

K. Jack means the intersection quadrant.

Let g be the function that gives the area of triangle OAP' in terms of θ .

i. Define the function g.

2 marks

Area = 1 x baskx height

Area = $\sin \Theta$, $\Theta \in (0, \frac{\pi}{3}]$ 11ho 04951

Determine the maximum possible area of the triangle *OAP'*.

2 marks

Moximum area when O is a Maximum 1e. When O= Tz.

Moscimum Area = Sin(3)