E. 5 Ohm's Law

Video: Ohm's Law

In any Circuit, if a circuit element gives a straight line graph of V vs I , as shown

It is said that the element obeys Ohm's Law

$$
\begin{aligned}
& \mathrm{V} \propto \mathrm{I} \\
& \mathrm{~V}=\mathrm{I} \mathrm{R}
\end{aligned}
$$

R is called the resistance and is measured in $\operatorname{Ohms}(\Omega)$

Example

A resistor of 5Ω is supplied with a potential which can vary from 1 V to 100 V . a What will be the range of current that will flow in it?
b How much energy will be dissipated in the resistor each second when $\mathrm{V}=100 \mathrm{~V}$?

Solution

a 5 V are required to make 1 A flow in this resistor. Therefore, at 1 V the current will be A or
0.2 A . More formally:

At $1 \mathrm{~V}, I=V / R==0.2 \mathrm{~A}$
At $100 \mathrm{~V}, I==20 \mathrm{~A}$ (or simply 100 times the previous answer).
b At $1 \mathrm{~V}, 0.2 \mathrm{C}$ flow through the resistor each second. The energy is given by:
$\Delta U=q V$
$=0.2 \times 1$
$=0.2 \mathrm{~J}$
At $100 \mathrm{~V}, \Delta U=20 \times 100=2000 \mathrm{~J}$

Devices which do not have straight lines for their graphs of V vs I are called non-ohmic devices. Examples of these are light globes and diodes.

When working with non-ohmic devices we use the graph to find our information.

Example

The graph represents the $I-V$ characteristic of a $240 \mathrm{~V}, 60 \mathrm{~W}$ light bulb.

What is the resistance at:
a 24 V ?
b 120 V ?
c 240 V ?

Solution

Resistance is given by $R=V / I$ at any point on the graph. Note that the current is given in mA ($100 \mathrm{~mA}=0.1 \mathrm{~A}$).
a At 24 V
$R=24 / 0.10$
$=240 \Omega$
b At 120 V
$R=120 / 0.20$
$=600 \Omega$
c At 240 V
$R=240 / 0.25$
$=960 \Omega$

E. 6 Resistances

A resistor or a resistance is a circuit element that resists the flow of electricity (electrons). The higher the number the higher the resistance. The units of resistance are Ohms (Ω). Experiments show that the resistance of a metal will depend on its length, area and material.
$\therefore R=\frac{\rho I}{A}$ where ρ is a constant for the material called the resistivity $(\Omega \mathrm{m})$.

Problem Set \#4: Text Section 3.4 Page 119-120 Questions 1-8

