Physics with Synno - Motion-2 - Lesson 11

M.3.3 Newton's Second Law

When a constant force acts on a body we notice that the body undergoes constant acceleration.

If we change the size of the constant force the size of the acceleration changes, such that $\mathrm{F} \alpha$ a.

Applying a given force to different objects results in differing accelerations.
The property of the object that causes this variation is the mass (m) and we have

$$
\mathrm{F}=\mathrm{ma}
$$

which strictly speaking should be written as

$$
\Sigma \mathbf{F}=\mathrm{m} \mathbf{a}
$$

Force is a vector and behaves as any vector would.
Units Force has the unit of Newton (N)
mass has the unit of Kilogram (Kg)
acceleration has the unit of ms^{-2}

1 Newton \approx weight of an apple
Note 1) Direction of \vec{a} is direction of $\Sigma \vec{F}$
2) If $\vec{a}=0$ then $\Sigma \vec{F}=0$
3) If $\vec{a}=0$ in any direction, then $\Sigma \vec{F}$ in that direction $=0$

Example $1 \quad$ A force of 6 N accelerates a mass of 3 Kg . What acceleration results?

$$
\begin{aligned}
& \Sigma \mathbf{F}=\mathrm{m} \mathbf{a} \\
& 6=3 \mathbf{a} \\
& \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 2 A freestyle swimmer whose mass is 75 kg applies a force of 350 N as he begins a race. The water opposes his efforts to accelerate with a drag force of 200 N . What is his initial acceleration?

$$
\begin{aligned}
& \Sigma \mathbf{F}=\mathrm{m} \mathbf{a} \\
& 350-200=75 \mathbf{a} \\
& 150=75 \mathbf{a} \\
& \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 3 A body is acted upon by two forces. 3 N north and 4 N east. If its mass is 6 Kg . What is the acceleration?

$$
\Sigma \mathbf{F}=\mathrm{m} \mathbf{a}
$$

$$
\begin{aligned}
& \Sigma F^{2}=3^{2}+4^{2} \\
& \Sigma F^{2}=9+16 \\
& \Sigma F=\sqrt{25} \\
& \Sigma F=5 N \\
& x=\tan ^{-1}\left(\frac{4}{3}\right) \\
& x=53.1^{\circ}
\end{aligned}
$$

Net Force is $5 \mathrm{~N}, \mathrm{~N} 53.1^{\circ} \mathrm{E}$
$5=6 \mathbf{a}$
$\mathbf{a}=0.83 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~N} 53.1^{\circ} \mathrm{E}$
Problem Set \#11: Text Page 347 All Questions

