# Physics with Synno – Motion-2 – Lesson 21

### M.7.4 Energy

When we do work, such as pushing a wheel barrow, we get tired or use up the quantity known as energy. *ENERGY* is the ability to do work.

Energy does not disappear, but is either

- 1) transferred to another object
- or 2) transformed into another kind.

Thus we formulate the principle of conservation of energy which states that

#### **Energy** is **neither** created or destroyed

we say that

```
Work done by an object = transfer of energy from that object and Work done on an object = gain in energy to that object or \mathbf{W} = \Delta \mathbf{E}
```

The units for energy are the same as the units for work, the Joule (J).

#### Example:

If a man does 200 J of work pushing a wheel barrow, he transfers 200 J of energy to the wheel barrow.

#### M.7.5 Types of Energy

### M.6.7.1 Kinetic Energy

We define kinetic energy as the energy a body has when it is in motion. We can derive an expression for kinetic energy.

Consider an object of mass, m, originally at rest being acted upon by a force of F N for a distance of d m. No friction.

We have

```
Work done = energy gain = final K.E. (in this case)
```

```
∴ Final K.E. = \mathbf{F} \times x
= \mathbf{m} \ \mathbf{a} \times x (eq<sup>n</sup> 1)
```

Evaluating the acc<sup>n</sup> using constant acc<sup>n</sup> formula

$$v^{2} = u^{2} + 2ax$$

$$u = 0 \quad v = v \quad x = d \quad a = a$$

$$v^{2} = 0 + 2ad$$

$$v^{2} = 2ad$$

$$\Rightarrow \quad a = \frac{v^{2}}{2d}$$

Now substitute into eq<sup>n</sup> 1

Final K.E. = 
$$\frac{\text{m} \text{ v}^2}{2x} \times x$$
  
=  $\frac{1}{2}$  m v<sup>2</sup>

so 
$$E_K = \frac{1}{2} \text{ m v}^2$$

In fact work done = change in kinetic energy = Final K.E. – Initial K.E.

$$W = \Delta E_k = \frac{1}{2} m v^2 - \frac{1}{2} m u^2$$

## Examples:

1. A body of mass 6 Kg has a speed of 3 m s<sup>-1</sup>. What is its K.E.?

$$\mathbf{E}_{\mathbf{K}} = \frac{1}{2} \text{ m } \mathbf{v}^{2}$$

$$\mathbf{E}_{\mathbf{K}} = \frac{1}{2} \times 6 \times 3^{2}$$

$$\mathbf{E}_{\mathbf{K}} = 27 \text{ J}$$

2. A body of mass 4 Kg with a speed of 3 m s<sup>-1</sup> accelerates to a speed of 6 m s<sup>-1</sup>. What is a) the change in K.E.

$$\begin{split} \Delta E_k &= \frac{1}{2} \ m \ v^2 - \frac{1}{2} \ m \ u^2 \\ \Delta E_k &= \frac{1}{2} \times 4 \times 6^2 - \frac{1}{2} \times 4 \times 3^2 \\ \Delta E_k &= 72 - 18 \\ \Delta E_k &= 54 \ J \end{split}$$

b) the work done on the body

$$W = \Delta E$$
$$W = 54 J$$

**Video:** Physics of Car Crashes #227

### M.7.5.2 Potential Energy

The potential energy is the energy stored within a body. The symbol used to represent potential energy is U. Usually followed by a subscript indicating what type.

## M.7.5.2.1 Elastic Potential Energy

Springs can store energy when they are stretched or compressed. We can store the energy in the spring by applying a force to alter its length, thus we are doing work on the spring. we have

Energy stored = potential energy of spring = work done on spring

In about 1675 Robert Hooke noticed that the more you stretch a spring from it's natural length, the stronger the force needed.

i.e.  $F \alpha \Delta x$ 

we write  $\mathbf{F} = \mathbf{k} x$  Hooke's law

where k = spring constant (unit N m<sup>-1</sup>)

we get a graph which looks like



Now P.E. of spring = Work done on it

We can calculate the work done on a spring in stretching it *x* metre from the force-distance graph.



Work done = area under graph =  $\frac{1}{2}$  F x (can't use  $w = f \times x$  because force not constant)

But F = k x

So work done =  $\frac{1}{2} k x x$ =  $\frac{1}{2} k x^2$ 

 $\therefore \qquad \mathbf{U_s} = \frac{1}{2} \, \mathbf{k} \, \mathbf{x}^2 \quad (\mathbf{Joule})$ 

Note: For a spring compressed and then released  $\Delta$  P.E. (spring) =  $\Delta$  K.E. (body). Conservation of energy.  $E_{total} = E_K + U_s$ 

Example 1. Find the P.E. of the spring when compressed 0.2 m.



$$U_s = area$$

$$U_s = \frac{1}{2} \times 0.2 \times 4$$

$$U_s = 0.4 J$$

# Example 2.

For a spring with  $k = 5 \text{ N m}^{-1}$ . Find

a)  $\triangle$  P.E. when compressed from 0 $\rightarrow$ 20 cm

$$\label{eq:Us} \begin{split} U_s &= \frac{1}{2} \ k \ x^2 \\ U_s &= \frac{1}{2} \times 5 \times 0.20^2 \\ U_s &= 0.1 \ J \end{split}$$

b) If compressed by 20 cm and a body is placed there and let go. What is the K.E. as it passes zero compression?

$$\begin{array}{l} U_s \rightarrow E_k \\ E_k = 0.1 \, J \end{array}$$

### M.7.5.2.2 Gravitational Potential Energy

When an object is raised above the surface of the Earth energy is stored. To raise a body above the ground we must do work against the weight force.

Let us raise a mass, m, h metre above the ground



$$U_g$$
 = work done against weight force  
=  $F \times x$   
= m g h (Joule)

$$\therefore \qquad \mathbf{U_g} = \mathbf{m} \, \mathbf{g} \, \mathbf{h} \, \, (\mathbf{Joule})$$

### Examples

1) A mass of 5 Kg is raised 6 m above the ground. What is it's P.E.?

$$\begin{array}{l} U_g \ = \ m \ g \ h \\ U_g \ = \ 5 \times 9.8 \times 6 \\ U_g \ = \ 294 \ J \end{array} \label{eq:ug}$$

2) A mass of 3 Kg is 7 m above the ground. If it is released, what is it's K.E. just before it hits the ground? What is it's speed?

$$U_g = m g h$$
  
 $U_g = 3 \times 9.8 \times 7$   
 $U_g = 205.8 J$   
 $U_g \rightarrow E_k$   
 $E_k = 205.8 J$   
 $E_K = \frac{1}{2} m v^2$   
 $205.8 = \frac{1}{2} \times 3 \times v^2$   
 $137.2 = v^2$   
 $v = 11.7 m/s$ 

**Problem Set#21:** Text Page 432 All Questions