M. 2 KINEMATICS

Kinematics is the study of the motion of objects. This involves a study of position, displacement, velocity, acceleration and time.

M.2.1 Position

The position of an object tells us where the object is situated. The symbol is x and the unit is metres (m).

M.2.2 Displacement

The displacement of an object is the change in its position and the direction of that change.
Example

Note: The displacement is independent of how you got there, the distance travelled or the path taken.
Example

The mathematical way of writing "change of" is to use the symbol Δ (delta).
Thus change of position is $\Delta x=x_{f}-x_{i}$
Since displacement has a magnitude and a direction it is a vector
Displacement is written as $\Delta \mathrm{x}, \mathbf{x}, \vec{x}$ or \vec{d}. The unit is metres.
Example
Sue travels 8 m in a northerly direction, followed by another 6 m in the easterly direction. What is
a) Her distance traveled
$8+6=14 m$
b) Her displacement

M.2.3 Velocity

Velocity is a quantity which tells us how fast an object is travelling and also the direction of travel. Thus velocity is a vector and is denoted by \vec{v}.
The velocity of an object is calculated by using the displacement and the time taken.

Thus

$$
\vec{v}=\frac{\Delta x}{t}=\frac{x_{2}-x_{1}}{t}
$$

This equation tells us the average velocity over the time $\Delta \mathrm{t}$.
The units of velocity are metres per second, written as ms^{-1}
Velocity should not be confused with speed. Speed is a scalar quantity and is calculated using the following formula

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

Note:

Example
Zoe walks 300 m North and then 400 m East. If it takes 8 minutes for the journey, find
a. Her average speed
speed $=\frac{\text { distance }}{\text { time }}=\frac{300+400}{8 \times 60}=\frac{700}{480}=1.46 \mathrm{~m} / \mathrm{s}$
b. Her average velocity
$\vec{v}=\frac{\text { displacement }}{\text { time }}$

Displacement is $500 \mathrm{~m} \quad \mathrm{~N} 53.1^{\circ} \mathrm{E}$

$$
\vec{v}=\frac{500}{480}=1.04 \mathrm{~m} / \mathrm{s} \mathrm{~N} 53.1^{\circ} \mathrm{E}
$$

