Physics with Synno – Motion-2 – Lesson 5

M.2 KINEMATICS

Kinematics is the study of the motion of objects. This involves a study of position, displacement, velocity, acceleration and time.

M.2.1 Position

The position of an object tells us where the object is situated. The symbol is x and the unit is metres (m).

M.2.2 Displacement

The displacement of an object is the change in its position and the direction of that change.

Example

Note: The displacement is independent of how you got there, the distance travelled or the path taken.

Example

The mathematical way of writing "change of" is to use the symbol Δ (delta).

Thus change of position is $\Delta x = x_f - x_i$

Since displacement has a magnitude and a direction it is a vector

Displacement is written as Δx , \mathbf{x} , \vec{x} or \vec{d} . The unit is metres.

Example

Sue travels 8m in a northerly direction, followed by another 6m in the easterly direction. What is

a) Her distance traveled

$$8 + 6 = 14 \text{ m}$$

b) Her displacement

8m
$$y^{2} = 8^{2} + 6^{2}$$

$$y^{2} = 64 + 36$$

$$y = \sqrt{100}$$

$$y = 10 \text{ m}$$

$$x = \tan^{-1}\left(\frac{6}{8}\right)$$

$$x = 36.9^{\circ}$$

M.2.3 Velocity

Velocity is a quantity which tells us how fast an object is travelling and also the direction of travel. Thus velocity is a vector and is denoted by \vec{v} .

The velocity of an object is calculated by using the displacement and the time taken.

Thus
$$\vec{v} = \frac{\Delta x}{t} = \frac{x_2 - x_1}{t}$$

This equation tells us the average velocity over the time Δt . The units of velocity are metres per second, written as ms⁻¹

Velocity should **not** be confused with speed. Speed is a scalar quantity and is calculated using the following formula

$$speed = \frac{distance}{time}$$

Note:

Example

Zoe walks 300m North and then 400m East. If it takes 8 minutes for the journey, find a. Her average speed

$$speed = \frac{distance}{time} = \frac{300+400}{8\times60} = \frac{700}{480} = 1.46 \text{ m/s}$$

b. Her average velocity

$$\vec{v} = \frac{displacement}{time}$$

300 m
$$y^{2} = 300^{2} + 400^{2}$$
$$y^{2} = 90000 + 160000$$
$$y = \sqrt{250000}$$
$$y = 500 m$$
$$x = \tan^{-1}\left(\frac{400}{300}\right)$$
$$x = 53.1^{\circ}$$

Displacement is 500 m N 53.1° E

$$\vec{v} = \frac{500}{480} = 1.04 \text{ m/s N } 53.1^{\circ} \text{ E}$$

Problem Set #5: Text Page 299 All Questions