M.2.5 Graphs of x, v, a and t

Consider the position-time graph of a person who walks 200 m to the shop at a uniform rate in 50 seconds.

The gradient of a graph is $\frac{\text { rise }}{\text { run }}$
In this case the gradient is $\frac{\Delta x}{t}$ which is the velocity (speed), which in this case is $4 \mathrm{~ms}^{-1}$.
Thus the gradient of an x-t graph is the velocity.
Example
A car driven by a learner driver travels along a straight driveway and is initially heading north. The position of the car is shown in the graph

a Describe the general motion of the car.
Something along the lines of
The car travels north at constant velocity for 10 m , it then stops for 2 seconds, it then reverses at constant velocity for 10 seconds back to its starting point. It then slows to a stop over a 6 second period, 5 m south of its original position.
b What is the displacement of the car during the first 10 s of its motion?
Displacement $=$ final position - initial position $=5 \mathrm{~m}$ North
c What distance has the car travelled during the first 10 s ?
Distance $=10 \mathrm{~m}+5 \mathrm{~m}=15 \mathrm{~m}$
d Calculate the average velocity of the car during the first 4 s .

$$
\vec{v}=\frac{\text { displacement }}{\text { time }}=\frac{10}{4}=2.5 \mathrm{~m} / \mathrm{s} \text { North }
$$

e Calculate the average velocity of the car between $t=6 \mathrm{~s}$ and $t=20 \mathrm{~s}$.

$$
\vec{v}=\frac{\text { displacement }}{\text { time }}=\frac{-5-10}{20-6}=\frac{-15}{14}=-1.07 \mathrm{~m} / \mathrm{s}=1.07 \mathrm{~m} / \mathrm{s} \text { South }
$$

f Calculate the average velocity of the car during its 20 s trip.

$$
\vec{v}=\frac{\text { displacement }}{\text { time }}=\frac{-5-0}{20}=\frac{-5}{20}=-0.25 \mathrm{~m} / \mathrm{s}=0.25 \mathrm{~m} / \mathrm{s} \text { South }
$$

g Calculate the average speed of the car during its 20 s trip.

$$
\text { speed }=\frac{\text { distance }}{\text { time }}=\frac{10+10+5}{20}=\frac{25}{20}=1.25 \mathrm{~m} / \mathrm{s}
$$

h Calculate the instantaneous velocity of the car at $t=18 \mathrm{~s}$.
The gradient of an x-t graph is the velocity. Using the triangle drawn on the graph.

$$
\vec{v}_{\text {inst }}=\frac{\text { Rise }}{\text { run }}=\frac{-5}{9}=-0.56 \mathrm{~m} / \mathrm{s}=0.56 \mathrm{~m} / \mathrm{s} \text { South }
$$

Now look at the following v-t graph.

The gradient of a graph is $\frac{\text { rise }}{\text { run }}$ which is $\frac{\Delta v}{t}$ which is the acceleration. In this case it is $4 \mathrm{~ms}^{-1}$.
Thus the gradient of a v-t graph is the acceleration.

Also we know that $v=\frac{\Delta x}{t}$
$\therefore \quad \Delta \mathrm{x}=\mathrm{v} \Delta \mathrm{t}$
but $\mathrm{v} \Delta \mathrm{t}$ is the area under the graph.
Thus the area under a v-t graph is equal to ($\Delta \mathrm{x})$ the change in position (displacement).

Example

The motion of a marble rolling across a floor is represented by the graph

Use this graph to help you to:
a describe the motion of the marble
Something along the lines of
The marble starts with a velocity of $8 \mathrm{~m} / \mathrm{s}$ it accelerates uniformly (Note: slowing negative acceleration) to be momentarily at rest after 4 seconds. It continues to accelerate at the same uniform rate for another 2 second where it reaches a velocity of $-4 \mathrm{~m} / \mathrm{s}$, which it maintains for another 3 seconds.
b calculate the displacement of the marble during the first 4 s
Thus the area under a v-t graph is equal to ($\Delta \mathrm{x}$) the change in position (displacement).
displacement $=$ area $=\frac{b \times h}{2}=\frac{8 \times 4}{2}=16 \mathrm{~m}$
c determine the displacement for the 9 s shown

$$
\begin{aligned}
\text { displacement } & =\text { area } 0-4 \mathrm{sec}+\text { area } 4-6 \mathrm{sec}+\text { area } 6-9 \mathrm{sec} \\
& =\frac{8 \times 4}{2}+\frac{2 \times-4}{2}+3 \times-4=16+-2+-12=2 \mathrm{~m}
\end{aligned}
$$

d find the acceleration during the first 4 s
$\vec{a}=\frac{\Delta v}{t}=\frac{0-8}{4}=-2 \mathrm{~m} / \mathrm{s}^{2}$
e find the acceleration from 4 s to 6 s .
$\vec{a}=\frac{\Delta v}{t}=\frac{-4-0}{2}=-2 \mathrm{~m} / \mathrm{s}^{2}$

Now consider what happens when you have an a-t graph and want to find out velocity.

We know $\vec{a}=\frac{\Delta v}{t}$
$\therefore \quad \Delta \mathrm{v}=\mathrm{a} \times \mathrm{t}$
but $\mathrm{a} \times \mathrm{t}$ is the area under the graph.
Thus the area under an a-t graph is equal to $(\Delta \mathrm{v})$ the change in velocity (speed).
Summary of Graphs

Graph	Gradient	Area	Read Directly
$x-t$	Velocity	-	Position at any time
$v-t$	Acceleration	Displacement	Velocity at any time
$a-t$	-	Change in Velocity	Acceleration at any time

Problem Set \#7: Text Page 313 All Questions

